MEAN ERGODIC THEOREMS FOR ALMOST PERIODIC SEMIGROUPS

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Research Article Nonlinear Mean Ergodic Theorems for Semigroups inHilbert Spaces

Let K be a nonempty subset of a Hilbert space , where K is not necessarily closed and convex. A family Γ= {T(t); t ≥ 0} of mappings T(t) is called a semigroup on K if (S1) T(t) is a mapping from K into itself for t ≥ 0, (S2) T(0)x = x and T(t+ s)x = T(t)T(s)x for x ∈ K and t,s≥ 0, (S3) for each x ∈ K , T(·)x is strongly measurable and bounded on every bounded subinterval of [0,∞). Let Γ be a se...

متن کامل

Mean Ergodic Theorems for C0 Semigroups of Continuous Linear Operators

In this paper we obtained mean ergodic theorems for semigroups of bounded linear or continuous affine linear operators on a Banach space under non-power bounded conditions. We then apply them to the wave equation and the system of elasticity to show that the mean of their solutions converges to their equilibriums.

متن کامل

Ergodic Theorems and Perturbations of Contraction Semigroups

We provide sufficient conditions for sums of two unbounded operators on a Banach space to be (pre-)generators of contraction semigroups. Necessary conditions and applications to positive semigroups on Banach lattices are also presented.

متن کامل

Approximation theorems for Banach-valued almost periodic and semi-almost periodic holomorphic functions

The paper studies semi-almost periodic holomorphic functions on a polydisk which have, in a sense, the weakest possible discontinuities on the boundary torus. The basic result used in the proofs is an extension of the classical Bohr approximation theorem for almost periodic holomorphic functions on a strip to the case of Banach-valued almost periodic holomorphic functions.

متن کامل

Application of the Mean Ergodic Theorem to Certain Semigroups

We study the asymptotic behaviour of solutions of the Cauchy problem u′ = (∑n j=1(Aj + A −1 j ) − 2nI ) u, u(0) = x as t → ∞, for invertible isometries A1, . . . , An.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Taiwanese Journal of Mathematics

سال: 2010

ISSN: 1027-5487

DOI: 10.11650/twjm/1500405906